Yield maps in Precision Agriculture

Share this article!

This post should have been published a long time ago, especially since it was the subject of my thesis. It’s now done…

First of all, one might ask why a thesis work was proposed on yield data when yield sensors have been around since the 1990s? First, it is clear that yield information is in itself of primary interest to producers. Yield does indeed quantify the level of production in a field and can be easily related to the gross margin of the farm (this will be the subject of a future post). Secondly, from a more general point of view, yield sensors have been available since the early 1990s, which means that historical yield mapping databases are likely to be available on many plots. It might therefore be interesting to return to this yield information with all the knowledge and feedback potentially available.  We had imagined that rethinking the processing and analysis of this data by linking it to all the expert knowledge that has been gathered could help generate new information and perhaps raise new relevant questions and perspectives. It should also be noted that the yield map can be seen as a symbol of Precision Agriculture. Knowing that yield sensors were born over two decades ago but are still struggling to be used properly by field operators may also call into question the legitimacy of Precision Agriculture to meet the demands of professionals.

Yield monitors: one of the pioneer sources of PA

Yield monitors have been available since the early 1990’s. They have been key in the development of Precision Agriculture because they were one of the first means to define, quantify, and characterize the within-field  variability  in  crop production

Figure 1. Yield map showing the within-field yield spatial variability

These  monitors  are  mounted  on  combine harvesters and measure in real-time the amount of grain that passes through the combine when the crop is being harvested. Note that the type of yield measurement that is performed depends on the location of these sensors inside the machine. When the  combine  passes through the  field, the  crop (stems  and  grains) is  cut at the header level and flows in the combine through the feed conveyer. The threshing systems  then separate the grains from the stems. Grains are cleaned with the fan and sieve tables and work their way to the  storage  tank, the  hoper, flowing through the  grain auger trough and  grain elevator. Stems are rejected from the combine.

Figure 2. Diagram of a conventional combine harvester (Source : Wikipédia).

Acquisition  of  within-field  yield  data:  combine  harvesters  and  yield monitors

Yield monitors are usually installed near the grain elevator (Figure 3). Two main systems are usually reported: the volume-flow meters (Figure 3, a, b) and mass-flow meters (Figure 3, c, d,e,f) [Berducat, 2000; Chung et al., 2017].

  • Volume-flow sensors estimate the volume of grain either on a paddle wheel situated right after the grain elevator (Figure 3, a) or directly within the grain elevator using a one-way light barrier (Figure 3, b). In the first case, a level sensor measures the level of grain that is flowing through the wheel. In the  second  case,  the  volume  of  grain  is  estimated  by  the duration  of light interruption as the grain flows through the grain elevator. Grain volumes are then converted into grain mass using the specific weight of the grain.
  • Mass-flow sensors rely  either  on  the  force  measurement  principle  (Figure 3 ,  d,e,f)  or  on  the absorption of gamma rays by mass (Figure 3, c) (Kormann et al., 1998 ). In the first case, the grain weight is estimated using a force transducer that measures the impact force of the grain at the end of the grain elevator. In the second case, a radiation detector measures the absorption of gamma rays (emitted by the radiat ion source) by the grain, which is then used to estimate the grain weight.

Figure 3. Yield monitors: mass and volume-flow sensors (source: Kormann et al., 1998)

All the combine harvester’s systems that come into play to calculate the crop yield are displayed in Figure 4.  Moisture  sensors  are  used  to provide  a  yield  record  at  a  reference  moisture  level.  These  sensors are generally placed near the grain auger or grain elevator to estimate the grain moisture using the dielectric properties of the harvested grain. Note that the positioning systems enable to associate a  location in space to yield records and consequently enable to generate yield maps.

Figure 4.  Yield  mapping technologies  within  a  combine  harvester (source:  Kormann  et  al.,  1998; Chung et al., 2017)

Characteristics of within-field data

The acquisition  of  within-field  yield  data can  be  understood  as  a  sequential  procedure  through  time during  which  a combine acquires yield  spatial information. T he  data  collection  process  follows  a temporal dynamic, i.e., observations are recorded in a specific order one at a time as the machine passes through the field (Figure 5). The machine can simply be modelled by a structuring element that moves through the field, i.e., a rectangle whose dimensions are defined by the characteristics of the combine  and  the  associated  on-board  sensors (yield  monitor in  this  case).  On-the-go yield measurements  are punctual observations and each point synthesizes the yield response over the corresponding structuring element.  The yield spatial  resolution  is  controlled  by  the  distance  between  consecutive  records  and determined  by  the  distance  between  adjacent  passes  of  the  machine.  The  spatial  distance  between consecutive observations is related to the speed of the machine and the sampling frequency of the sensor . In  a  given  field,  this  frequency  of  acquisition  is  generally  stable,  meaning that  the  distance  between consecutive records only relies on the travel speed of the combine. On the other hand, when a combine harvester  with  an  on-board  grain  yield  monitor  passes  through  a  field, the  distance  between  adjacent passes is related to the width of the cutting bar because the whole field has to be harvested.

Figure 5. Acquiring within-field yield data (blue dots) with a combine harvester (source: Leroux et al., 2018a)

These observations are therefore irregularly-distributed in space because

  • the intra-row and inter-row distances are  different  and
  • (ii) the  acquisition  conditions,  such  as  the  GNSS  accuracy  or  variable combine speed, can impact the spatial distribution of the observations, and
  • (iii) some observations can be missing  (loss  of  positioning  signal,  full  memory  card).

The  yield  information  is also very  dense (thousands  of  points  per  hectare)  and  very  noisy  because  of  stochastic  error  in  sensor  operation,  the intrinsic local variab ility in production and errors associated with the combine harvester passing through the field (Simbahan et al., 2004; Sudduth and Drummond, 2007). Nevertheless, within-field yield data usually exhibit quite a strong spatial structure, i.e., spatial observations are well-structured within the fields and yield spatial patterns are clearly visible (Pringle et al., 2003). As most arable crops need to be harvested  each  year,  historical  databases  of  yield  mapping  are  likely  to  be  available  on  many  arable systems. However, it must be said that temporal within-field yield data might not be collocated in space (the yield monitor is not measuring the yield information at the exact same location each year)

Provision and usages

In the Precision Agriculture scientific community, yield data are generally used to (i) quantify and characterize within-field variability, (ii) correlate the yield with an auxiliary variable, and (iii) validate the suitability of a modulation application. And it should be said that it is not very complicated to find research that uses these within-field yield data at some point in time. Nevertheless, a recent scientific mapping study (a kind of mind-map) also showed that the interest of the precision farming scientific community in yield maps had decreased between the periods 2000-2009 and 2010-2016 (Pallottino et al., 2017).

When one is interested in the use of yield sensors in the field, it is another matter… There are already almost no statistics for France (this is why the French observatory of digital uses in France will soon release an infography on the subject). Nevertheless, more or less recent statistics for a number of countries – other than France – can be found in technical reports and scientific bibliography. I invite you to take these statistics with a little hindsight!

First of all, we must be clear on the fact that these trends in use vary greatly between countries (and sometimes even regions) and the cultures being monitored. American farmers may have been the first users to engage themselves in such yield mapping technologies (Griffin et al., 2004; Fountas et al. , 2005). These authors have reported that, by 2005, about 90% of yield monitors in the world were in the US. Griffin and Erickson (2009) have also provided  some  adoption  rates from  an Agricultural  Resource  Management  Survey .  According  to  the study and available data, 28% of U.S. corn planted acres (in 2005), 10% of winter wheat (in 2004), and 22% of soybeans (in 2002) were harvested with a combine equipped with a yield monitor. Norwood and Fulton  (2009)  have  concluded  in  their  study  that  32%  of  US  farmers  w ere  using  yield  monitoring systems. Figure 6 displays the  results  of  another  study  investigating  the  adoption  of  yield  mapping systems per crop in United States (Schimmelpfennig, 2016) . Even if the estimates are not exactly the same,  trends  can  be  considered  similar.  Regarding  the  investigated  crops,  it  clea rly  appears  that  the production of crops such as corn, soybean and wheat has been increasingly followed by farmers from the beginning of 2000’s through yield mapping technologies. Given the observed trends, the adoption in more recent campaigns (2017, 2018 ) should be expected to be again higher. A more recent study also stated the fact that rice farms in USA had been largely adopting yield monitoring technologies, by more than 60% (USDA, 2015).

Figure 6. Adoption of yield mapping technologies per crop in United States

Adoption rates of yield mapping technologies are not as widely reported in other countries, but some national  studies  intended  to  provide  some  detailed  numbers.  According  to  the  Department  for   Environment, Food & Rural Affairs, English farmers have experienced a small increase in yield mapping adoption from 7 to 11% between 2009 and 2012 (DEFRA, 2013). In Australia, McCallum and Sargent (2008) have reported a very low adoption rate of yield mapping tech nologies (less than 1%). Within the same country, it was estimated that about 800 yield monitors had been used in the 2000 harvest year (Mondal & Basu, 2009). Fountas et al. (2005) have evaluated that About 400 Danish, 400 British, 300 Swedish  and  200  German  farmers had adopted  yield  monitors  by  the  year  2000.  Yield  mapping technologies have also been reported in developing countries (Say et al., 2017). In Argentina, Mondal and  Basu  (2009)  have  reported  that  about  4%  of  the  grain  and  oil  seed  area had  been harvested  by combines with yield monitors in 2001 (560 yield monitors were in use). According to Keskin and Sekerli (2016), about 500 combine harvesters (3% countrywide) are equipped with yield monitoring systems in Turkey  farms.  Akdemir  (2016)  provided  a lower  adoption  rate  of  yield  mapping  technologies  (310 combines instead of 500) in the same country.

Advantages and limits of within-field yield data

 While it is clear that the adoption of yield mapping technologies is increasing in both developed and developing countries, one may wonder which factors and aspects of within-field yield data may have contributed to such a slow adoption of yield mapping technologies. Yield monitors mounted on combine harvesters have been available since the early 1990’s. How ever, yield data still have difficulties in being a decisive component of the decision-making process in precision agriculture studies. In terms of the utility of yield data, multiple issues have been reported by the scientific community. First of all, it is clear  that  spatial  yield  patterns originate from  an  interaction between, management,  climate  and environmental (soil, landscape, pest attacks, etc) conditions within a cropping season, which means that it is not possible to derive variable-rate applicat ion maps directly for a year n by solely relying on yield data in year n-1. Secondly, it is  acknowledged  that in annual and perennial crops, the yield temporal variability is often stronger than the yield spatial variability, which can hinder analyses over short and long-time  periods  (Blackmore  et  al.,  2003;  Bramley  and  Hamilton,  2004;  Eghball  and  Power,  1995; Lamb  et  al.,  1997). This  temporal  variability  is  essentially  due  to  non-stable  factors,  such  as  climate patterns or the type of crops being grown eac h year (Basso et al., 2012). Multiple authors have stated that the number of years of yield data available to conduct yield temporal analyses was critical (Bakhsh et  al.,  2000;  Kitchen  et  al.,  2005)  and  some  have  even  tried  to  propose  a  minimum  number  of  y ears necessary to obtain reliable results (Ping and Dobermann, 2005).  On top of that, yield data often come with a large number of defective observations resulting from the pass of the combine harvester inside the fields, which do not correspond to the yield that should have been  obtained  under  the  growing  conditions  in  the  field (this will be discussed in the next post). Some  of  these  erroneous  observations are widely reported in the literature, e.g., flow delay, filling and emptying times, abrupt speed changes or partially-used   cutting   bar (Arslan   and   Colvin,   2002;   Sudduth   and   Drummond,   2007). Some improvements have been proposed, e.g., sensors to measure in real-time the cutting width (Zhao et al., 2010), but  most  of  the  combines  are  not  equipped  with  these  new  technologies. These  errors,  if  not  accounted for, can influence agronomical decisions over the fields (Griffin et al., 2008). From a more practical perspective, it can also be argued that end-users can solely get the yield information at the end of the growing season, which might constitute a limitation in terms of decision support tool.

However, from a precision agriculture standpoint, these high-resolution yield data are a very valuable source of information that would be aberrant not to consider (Florin et al., 2009). Yield spatial patterns are  a  valuable  piece  of  information  to  better  characterize  the  sources  of  spatial  variability  across  the fields. Farmers are interested to know about the mean yield spatial and temporal patterns over their fields so they can make informed and reliable management decisions.  It has been shown that, despite a strong temporal variability, it was often possible to detect consistent yield spatial patterns across years (Kitchen et al., 2005; Taylor et al., 2007). Some yield patterns were found consistent even under different crops and varying climate conditions.  Furthermore, yield spatial patterns can deliver relevant information with respect to soil characteristics within the field or can help depict the influence of other external factors, such as managemen t practices and weather conditions (Diker et al., 2004). For instance, Taylor et al. (2007) showed that, in specific portions of their field study, crop rotation management in previous years originated variations in yield spatial patterns. Other authors have found that high-yielding areas in dry years could, at the same time, be low-yielding areas in wet years which could give critical information with respect to within-field soil characteristics (Colvin et al., 1997; Sudduth et al., 1997; Taylor et al., 20 07). Another strong advantage of these yield datasets  is  their accessibility. Something that was considered  as  a flaw in the  previous paragraph can also be seen as a strong asset. Indeed, in most cases, harvest has to be made which means that these data can be collected yearly once farmers have invested in yield monitors , and consequently that large databases of yield mapping can be built. Finally, it should be argued that within-field yield data are directly related to the crop performance and so to the gross margin of the field . As such, these data bring a very comprehensible and practical information to farmers and advisors.

How to valorize yield maps?

Without going into the details of all the projects that could be carried out using yield maps, here is a small outline of what could be done. Some of these ideas have been addressed in the thesis manuscript that you will find on the website. Some of these ideas are quite operational, others are more exploratory. The list is obviously not exhaustive!

  • Spatialize agronomic models with high-resolution yield data. For example, work had been done on P/K fertilization plans to assess the extent to which within-field yield information could be used to refine fertilization plans, including refining within-field yield potentials and within-field P/K exports.
  • Spatialize performance/economic profitability maps on farms (this will be the subject of a forthcoming post)
  • Use yield time series to better understand yield potentials and within-field yield gaps. This work was addressed in the framework of the thesis
  • Evaluate the potential of modulation actions in a plot of land
  • Validate the relevance of field experiments
  • Improve knowledge of the yield at a given spatial scale (region, territory, etc.) for a cooperative or an elevator that would like to obtain supplies.
  • Use yield maps to guide field sampling campaigns
  • Use yield time series to improve understanding of yield limiting factors in the plots. Leads were evoked during the discussion of the thesis manuscript.
  • Use yield time series to assess the risk to a farmer of not changing his practices or not engaging in modulation or Precision Farming practices. Leads were evoked during the discussion of the thesis manuscript.

– ….

One last criticism for manufacturers.

We’ve just talked about accessibility of yield data; let’s talk about interoperability. If you start working with yield data, you’re going to realize very quickly that there are an impressive amount of data formats provided by manufacturers…. But these are mostly private formats ! If you don’t have the proprietary software that goes with it, good luck… You will then have to develop specific modules to be able to read them. Add to that the fact that each constructor measures the variables that interest him, and that the units of measurement are different and you will tear your hair out pretty quickly.

Manufacturers, if you read this post, make your data accessible in an open, free or at least standardized format!

You’ll excuse me for the bibliographical references that I didn’t reclassify specifically for this post… but you should be able to find them without any problem =)

  1. Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9, 285-302.
  2. Adams, R., & Bischof, L.  (1994).  Seeded  Region  Growing. IEEE  Transactions  on  Pattern  Analysis  and Machine Intelligence, 16, 641-647
  3. Akdemir, B. (2016).  Evalution  of  precision  farming  research  and  applications  in  Turkey. VII  International Scientific  Agriculture  Symposium  “Agrosym  2016”.  6-9  October  2016,  Jahorina,  Bosnia and  Herzegovina. Proceedings Book. pp.1498-1504.
  4. Angiulli, F., Fassetti, F., & Palopoli,  L. (2009). Detecting  outlying properties of exceptional objects. ACM Transactions on Database Systems, 34, 1, 1-7.
  5. Angiulli, F., Fassetti, F., & Palopoli, L. (2012). Discoverying characterizations of the behavior of outlier sub -populations. IEEE Transactions on Knowledge and Data Engineering, 25, 1280-1292
  6. Arslan, S., &  Colvin,  T.  (2002 ).  Grain  yield  mapping :  yield  sensing,  yield  reconstruction,  and  errors. Precision Agriculture, 3, 135-154
  7. Arslan, S. (2008). A Grain Flow Model to Simulate Grain Yield Sensor Response. Sensors, 8, 952–962.
  8. Arun, P.V. (2013). A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Science, 16, 2, 133-139.
  9. Baluja, J., Diago, M.,  Goovaerts,  P.,  &  Tardaguila,  J.  (2012 ).  Assessment  of  the  spatial  variability  of anthocyanins  in  grapes  using  a  fluorescence  sensor:  relationships  with  vine  vigour  and  yield. Precision Agriculture, 13, 457–472.
  10. Bakhsh, A., Jaynes, D.B., Colvin, T.S., & Kanxar, R.S. (2000). Spatio-temporal analysis of yield variability for a corn-soybean field in Iowa. Agricultural and Biosystems Engineering, 43, 31-38.
  11. Barnaghi, P., Sheth, A., & Henson C. (2013 ) “From data to actionable knowledge: Big data challenges in the web of things,” Intelligent Systems, IEEE, 28, 6–11, 2013.
  12. Basso, B., Bertocco, M., Sartori, L., & Martin, E.C. (2007 ). Analyzing the effects of climate variability on spatial pattern of yield in a maize–wheat–soybean rotation. European Journal of Agronomy, 26, 82–91.
  13. Basso, B., Fiorentino,  C.,  Cammarano,  D.,  Cafiero,  G.,  &  Dardanelli,  J.  (2012 ).  Analysis  of  rainfall distribution on spatial and temporal patterns of wheat yield in Mediterranean environment. European Journal of Agronomy, 41, 52-65.
  14. Basso, B., B. Dumont, D. Cammarano, A. Pezzuolo, F. Marinello, & L. Sartori. (2016 ). Environmental and economic benefits of variable  rate  nitrogen  fertilization  in  a  nitrate  vulnerable  zone .  Science  of  the  Total Environment. 545–546, 227–235
  15. Bellehumeur, C., Legendre, P., & Marcotte, D. (1997). Variance and spatial scales in a tropical rain forest: changing the size of sampling units. Plant Ecology, 130, 89-98.
  16. Ben-Gal, I. (2005 ). Outlier Detection. The Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers. Boston: Kluwer Academic Publishers.
  17. Berducat, M., Boffety, D. (2000). Gestion de l’information parcellaire – cartographie du rendement à la récolte. Ingénieries – E A T, IRSTEA édition 2000, p. 53 – p. 62
  18. Beyer, K., Goldstein,  J.,  Ramakrishnan,  R.,  &  Shaft,  U.  (1999).  When  is  nearest  neighbor  meaningful ?  In Proceedings of the 7 th ICDT, Jerusalem, Israel.
  19. Bivand R.S., Pebesma, E.J., & Gomez-Rubio, V. (2008). Applied Spatial Data Analysis with R. New York, NY: Springer
  20. Blackmore, B. S., & Moore, M. (1999). Remedial correction of yield map data. Precision Agriculture, 1, 53 – 66.
  21. Blackmore, S., Godwin, R.J., & Fountas, S. (2003 ). The analysis of spatial and temporal trends in yield map data over six years. Biosystems Engineering. 84, 455-466.
  22. Bongiovanni, B. and  Lowenberg-Deboer,  J.  (2004).  Precision  agriculture  and  sustainability. Precision Agriculture, 5, 359_387.
  23. Bongiovanni, R.G., Robledo,   C.W.,   &   Lambert,   D.M.   (2007).   Economics   of   site-specific   nitrogen management for protein content in wheat. Computers and Electronics in Agriculture, 58, 13–24.
  24. Bramley, R.G.V., & Hamilton,  R.P.  (2004).  Understanding  variability  in  winegrape  production  systems. Australian Journal of Grape and Wine Research, 10, 32–45
  25. Bramley, R.G., Hill, P.A., Thorburn, P.J., Kroon, F.J., & Panten, K (2008 ). Precision agriculture for improved environmental outcomes: some Australian perspectives. Agriculture Forest Research, 3, 161–178.
  26. Breunig, M.M., Kriegel, H.P., Ng, R.T., & Sander, J. (2000). Lof: identifying density-based local outliers. In Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. ACM Press, pp. 93 – 104
  27. Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F. et al. (1994). Field -scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501 – 1511.
  28. Cambardella, C. A.,  &  Karlen,  D.  L.  (1999). Spatial  analysis  of  soil  fertility  parameters. Precision Agriculture, 1, 5-14.
  29. Cao, Q., Cui,  Z.,  Chen,  X.,  Khosla,  R.,  Dao,  T.H.,  &  Miao,  Y.  (2012 ).  Quantifying  spatial  variability  of indigenous nitrogen management in small scale farming. Precision Agriculture, 13, 45–61.
  30. Cassman, K. G. (1999 ). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America , 96, 5952–5959
  31. Cerovic, Z.G., Goutouly,  J.P.,  Hilbert,  G.,  Destrac-Irvine,  A.,  Martinon,  V.,  &  Moise,  N.  (2009 )  Mapping winegrape quality attributes using portable fluorescence-based sensors. In: Best S (ed) Progap INIA, FRUTIC 09, Conception, Chile, pp 301–310
  32. Chen, D., Lu, C-T., Kou, Y. & Chen, F. (2008). On Detecting Spatial Outliers. Geoinformatica, 12, 455-475
  33. Chung, S. O., Sudduth, K. A., & Drummond, S. T. (2002 ). Determining Yield Monitoring System Delay Time With Geostatistical and Data Segmentation Approaches. Transactions of the ASAE, 45, 915-926.
  34. Chung, S.O., Choi,  M.C.,  Lee,  K.H,  Kim,  Y.J,  Hong,  S.J.,  Li,  M.  (2016 ).  Sensing  Technologies  for  Grain Crop Yield Monitoring Systems: A Review. Journal of Biosystems Engineering, 41, 408-417.
  35. Cid-Garcia, N.M., Albornoz, V., Rios-Solis, Y.A., & Ortega, R. (2013 ). Rectangular shape management zone delineation using integer linear programming. Computer and Electronics in Agriculture, 93, 1–9.
  36. Clifford, P., Richardson,  S.,  &  Hemon,  D.  (1989 ).  Testing  the  association  between  two  spatial  processes. Biometrics, 45, 123–134.
  37. Collins, E.D., & Chandrasekaran, K. (2012 ). A Wolf in Sheep’s Clothing? An Analysis of the ‘Sustainable Intensification’ of Agriculture (Friends of the Earth International, Amsterdam, 2012)
  38. Colvin, T.S., Jaynes, D.B., Karlen, D.L., Laird, D.A., & Ambuel, J.R. (1997 ). Yield variability within a central Iowa field. Transactions of the ASAE, 40, 883–889.
  39. Comifer (2007 ). Teneur en P, K et Mg des organes végétaux récoltés pour les cultures de plein champ et les principaux fourrages, Comifer, Paris, 6 pages.
  40. Cox, S. (2002). Information technology : the global key to precision agriculture and sustainability. Computers and Electronics in Agriculture, 36, 93-111.
  41. Cressie, N. A., (1991). Statistics for Spatial Data. John Wiley & Sons, New York.
  42. Cressie, N. (1996). Change of support and the modifiable areal unit proble. Geographical Systems, 3, 159 – 180
  43. Dale, M.R.T, & Fortin, M.J. (2002). Spatial autocorrelation and statistical tests in ecology. Eco Science , 9, 162-167
  44. Davatgar, N., Neishabouri, M.R., & Sepaskhah, A.R. (2012 ). Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma, 173–174, 111–118.
  45. Debuisson, S., Germain,  C.,  Garcia,  O.,  Panigai,  L.,  Moncomble,  D.,  Le  Moigne,  et  al. (2010 ).  Using Multiplex® and Greenseeker™ to manage spatial variation of vine vigor in Champagne. 10th International Conference on Precision Agriculture.
  46. de Oliveira, R. P., Whelan, B. M., McBratney, A. B., & Taylor, J. A. (2007 ). Yield variability as an index supporting  management  decisions:  YIELDex. Proceedings  of  the  6th  European  Conference  on  Precision Agriculture, 281–288.
  47. DEFRA (2013). Farm  Practices  Survey  Autumn  2012 – England. Department  for  Environment,  Food  and Rural Affairs (DEFRA). 41pp.
  48. Di Virgilio, N.,  Monti,  A.,  &  Venturi,  G.  (2007). Spatial  variability  of  switchgrass  (Panicum  virgatum  L.) yield as related to soil parameters in a small field. Field Crops Research, 101, 232-239.
  49. Diker, K., D.F. Heerman, & M.K. Brodahl. (2004 ). Frequency analysis of yield for delineating yield response zones. Precision Agriculture, 5, 435–444.
  50. Drummond, S. T., Fraisse, C. W., & Sudduth, K. A. (1999 ). Combine Harvest Area Determination by Vector Processing of GPS Position Data. Transactions of the ASAE, 42, 1221–1227.
  51. Duan, L., Xu, L., Guo, F., Lee, J., & Yan, B. (2007). A local-density based spatial clustering algorithm with noise. Information Systems, 32, 978–986
  52. Duan L., Tang, G., Pei, J., Bailey, J., Campbell, A., & Tang, C. (2015 ). Mining outlying aspects on numeric data. Data Mining Knowledge Discovery, 29, 1116–1151
  53. Dutilleul, P. (1993).  Modifying  the  t-test  for  assessing  the  correlation  between  two  spatial  processes. Biometrics, 49, 305–314.
  54. Eghball, B., Power,  J.F.  (1995). Fractal  description  of  temporal  yield  variability  of  10  crops  in  the  United States. Agronomy Journal, 87, 152-156.
  55. Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P., Srivastava, J., Kumar, V., & Dokas, P. (2004). The MINDS – Minnesota Intrusion Detection System, in Data Mining, A. Joshi H. Kargupta, K. Sivakumar, and Y. Yesha (Eds.) Next Generation Challenges and Future Directions.
  56. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases  with  noise.  In  E.  Simoudis,  J.  Han,  and  U.  Fayyad  (Eds.), Proceedings  of  Second International Conference on Knowledge Discovery and Data Mining , Palo Alto, CA, USA: AAAI Press, pp 226–231.
  57. European Parliamentary Research Service (2016 ). Precision Agriculture and the Future of Farming in Europe, STOA, Brussels, European Union.
  58. EU SCAR. (2012). Agricultural knowledge and innovation systems in transition. Brussels: EU.
  59. Fairfield Smith, H. (1938). An empirical law describing heterogeneity in the yield of agricultural crops. The Journal of Agricultural Science, 28, 1–23.
  60. FAO (2017). The future of food and agriculture. http://www.fao.org/3/a-i6644e.pdf (accessed 05/06/2018)
  61. Fauvel, M., Chanussot, J.,  &  Benediktsson,  J.A.  (2011).  A  spatial–spectral  kernel-based  approach  for  the classification of remote-sensing images. Pattern Recognition, 45, 381-392.
  62. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., & Tilton, J. (2012). Advances in Spectral-Spatial Classication of Hyperspectral  Images. Proceedings  of  the  IEEE,  Institute  of  Electrical  and  Electronics Engineers, 101, 652-675.
  63. Filzmoser, P., Ruiz-Gazen,   A.,   &   Thomas-Agnan,   C.   (2014). Identification   of   local   multivariate outliers. Statistical Papers, 55, 29-47.
  64. Florin, M.J., McBratney,  A.B.,  &  Whelan,  B.M.  (2009 ).  Quantification  and  comparison  of  wheat  yield variation across space and time. European Journal of Agronomy, 30, 212-219.
  65. Fountas, S., Pedersen, S.M., & Blackmore, S. (2005). ICT in Precision Agriculture – diffusion of technology. In “ICT in Agriculture: Perspectives of Technological Innovation” edited by E. Gelb, A. Offer. 15pp.
  66. Fraisse, C.W., Sudduth,  K.A.,  Kitchen,  N.R.  (2001).  Delineation  of  site-specific  management zones  by unsupervised  classification  of  topographic  attributes  and  soil  electrical  conductivity. Transactions  of  the ASAE, 44, 155-166.
  67. Fulton, J.P., Shearer,  S.A., Chabra,  G.,  &  Higgins,  S.F.  (2001 ).  Performance  assessment  and  model development of a variable-rate, spinner-disc fertilizer applicator. Transactions of the ASAE, 44, 1071-1081.
  68. Fulton, J. P., Shearer, S.A., Higgins, S.F., Darr, M.J., & Stombaugh, T.S. (2005 ). Rate response assessment from various granular VRT applicators. Transactions of the ASAE, 48, 2095‐2103.
  69. Garnett, T., Appleby,  M.  C.,  Balmford,  A.,  Bateman,  I.  J.,  Benton,  T.  G.,  Bloomer,  P.,  et  al.  (2013 ). Sustainable intensification in agriculture: Premises and policies. Science, 341, 33–34.
  70. Gogoi, P, Bhattacharyya D, Borah B, & Kalita JK (2011 ). A survey of outlier detection methods in network anomaly identification. Computer Journal, 54, 570–88.
  71. Goldman Sachs (2016). Precision Farming. Cheating Malthus with Digital Agriculture. Profiles in Innovation.
  72. Goovaerts P. (1997). Geostatistics for Natural Ressources Evaluation, Applied Geostatistics Series, Oxford University Press, New York.
  73. Grassini, P., van Bussel, L.G.J., van Wart,  J., Wolf, J., Claessens,  L., Yang, H. et al. (2015 ). How  good is good  enough?  Data  requirements  for  reliable  crop  yield  simulations  and  yield-gap  analysis. Field  Crops Research, 177, 49-63.
  74. Griepentrog, H.W., Thiessen, E., Kristensen, H. & Knudsen, L. (2007). A patch-size index to assess machinery to match soil and crop spatial variability. In Proceedings: 6th European Conference on Precision Agriculture.
  75. Griffin, T.W., Lowenberg-Deboer,  J.,  Lambert,  D.M.,  Peone,  J.,  Payne,  T.,  &  Daberkow,  S.G.  (2004 ). Adoption, profitability, and making better use of precision farming data. Staff Paper #04-06. Department of Agricultural Economics, Purdue University.
  76. Griffin, T., Dobbins,  C.,  Vyn,  T.,  Florax,  R.,  &  Lowenberg-DeBoer,  J.  (2008 ).  Spatial  analysis  of  yield monitor data: case studies of on-farm trials and farm management decision making. Precision Agriculture , 9, 269–283
  77. Griffin, T. & Erickson, B. (2009 ). Adoption and Use of Yield Monitor Technology for U.S. Crop Production. Site Specific Management Center Newsletter, Purdue University, 9pp.
  78. Grisso, R., Alley, M. & Groover, G. (2009). Precision Farming Tools: GPS Navigation. Virginia Cooperative Extension. Publication No 442-501. 7pp.
  79. Han, S., J.W.  Hummel,  C.E.  Goering,  &  M.D.  Cahn.  (1994).  Cell  size  selection  for  site-specific  crop management. American Society of Agricultural and Biological Engineers, 37, 19–26.
  80. Haralick, R.M., Shanmugam,  K.,  &  Dinstein,  I.  (1973).  Texture  features  for  image  classification, IEEE Transactions on Systems, Man and Cybernetics, 3, 610-621.
  81. Harris, P., Brunsdon, C., Charlton, M., Juggins, S., & Clarke, A. (2014 ). Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods. Math Geosciences, 1–31.
  82. Hawkins, D. (1980). Identification of Outliers, London, UK: Chapman & Hall
  83. Hu, J., Gong C., & Zhang Z. (2012) Dynamic Compensation for Impact-Based Grain Flow Sensor. In: Li D., Chen Y. (eds)  Computer  and  Computing  Technologies  in  Agriculture  V.  CCTA  2011.  IFIP  Advances  in Information and Communication Technology, vol 370, 210-216, Berlin, Heidelberg, Germany: Springer
  84. Hubert, M., & Van der Veeken, S. (2008). Outlier detection for skewed data. Journal of Chemometrics , 22, 235–246
  85. Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R & Whisler, F.D. (2005 ). Spatial Variability Analysis of Soil Physical Properties of Alluvial Soils. Soil Science Society of America, 69, 1-14.
  86. Jingtao, Q., &  Shuhui,  Z.  (2010).  Experiment  research  of  impact-based  sensor  to  monitor  corn  ear  yield. International Conference on Computer Application and System Modeling, IEEE, 101, 187–192.
  87. Jones, H., Guillaume,  S.,  Loisel,  P.,  Charnomordic,  B.,  &  Tisseyre,  B.  (2016). Generation  of  Plateau -Approximated Fuzzy Zones. In Proceedings of the Conference on Spatial Accuracy, Montpellier, France.
  88. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. Academic Press, London, England.
  89. Junior, V.V., Carvalh, M.P., Dafonte, J., Freddi, O.S., Vidal Vazquez, E., & Ingaramo, O.E. (2006 ). Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil and Tillage Research , 85, 166–177.
  90. Keskin, M., & Sekerli, Y.E. (2016 ). Awareness and adoption of precision agriculture in the Cukurova region of Turkey. Agronomy Research, 14, 1307–1320.
  91. Kitchen, N.R., Sudduth, K.A., Myers, D.B., Drummond, S.T., & Hong, S.Y. (2005). Delineating productivity zones on claypan  soil  fields  using  apparent  soil  electrical  conductivity. Computers  and  Electronics  in Agriculture, 46, 285-308
  92. Knorr E. M., & Ng R. T. (1999). Finding Intensional Knowledge of Distance-based Outliers. In Proceeding s of the 25th International Conference on Very Large Data Bases, Edinburgh, Scotland, pp. 211-222
  93. Koch, B., Khosla, R., Frasier, W.M., Westfall, D.G., & Inman, D. (2004). Economic feasibility of variable -rate nitrogen application utilizing site-specific management zones. Agronomy Journal, 96, 1572–1580
  94. Kormann, G., Demmel,  M.,  &  Auernhammer,  H.  (1998). Testing  stand  for  yield  measurement  systems  in combine harvesters. ASAE;St. Joseph, MI: 1998. ASAE Paper No. 983102.
  95. Kravchenko, A.N., Robertson, G.P., Thelen, K.D., & Harwood, R.R. (2005). Management, topographical, and weather eff ects on spatial variability of crop grain yields. Agronomy Journal, 97, 514–523.
  96. Lachia, N. (2017 ). Usages  de  la  télédétection  en  agriculture.  Observatoire  des  usages  de  l’agriculture numérique. http://agrotic.org/observatoire/
  97. Lamb, J.A., Dowdy, R.H., Anderson, J.L., & Rehm, G.W. (1997). Spatial and temporal stability of corn grain yields. Journal of Production Agriculture, 10, 410-414.
  98. Larson, J.A., M.M.  Velandia,  M.J.  Buschermohle,  &  S.M.  Westland  (2016 ).  Effect  of  field  geometry  on profitability of automatic section control for chemical application equipment. Precision Agriculture, 17, 18 – 35.
  99. Lauzon, J.D., Fallow, D.J., O’Halloran, I.P., Gregory, S.D.L., & von Bertoldi, A.P. (2005 ). Assessing the temporal stability of spatial patterns in crop yields using combine  yield monitor data. Canadian Journal of Soil Science, 439-451.
  100. Lee, D. H., Sudduth, K. A., Drummond, S. T., Chung, S. O., & Myers, D. B. (2012 ). Automated yield map delay identification using phase correlation methodology. Transactions of the ASABE, 55, 743–752.
  101. Legendre, P. & L. Legendre (1998). Numerical Ecology, 2nd English edition. Elsevier, Amsterdam.
  102. Leroux, C., Jones,  H.,  Clenet,  A.,  &  Tisseyre,  B.  (2017a). A  new  approach  for  zoning  irregularly-spaced, within-field data. Computers and Electronics in Agriculture, 141, 196-206.
  103. Leroux, C., Jones, H., Clenet, A., Dreux, B., Becu, M., & Tisseyre, B. (2017b). Simulating yield datasets: an opportunity to improve da ta filtering algorithms. In J A Taylor, D Cammarano, A Preashar, A Hamilton (Eds.), Proceedings of the 11th European Conference on Precision Agriculture, Precision Agriculture ’17 (Advances in Animal Biosciences, 8, 600-605.
  104. Leroux, C., Jones,  H.,  Clenet, A.,  &Tisseyre,  B.  (2018a). A  general  method  to  filter  out  defective  spatial observations from yield mapping datasets. Precision Agriculture. https://doi.org/10.1007/s11119-017-9555-0
  105. Leroux, C., Jones, H., Taylor, J, Clenet, A., & Tisseyre, B. (2018b). A zone-based approach for processing and interpreting variability in multitemporal yield data sets. Computers and Electronics in Agriculture, 148, 299-308. https://doi.org/10.1016/j.compag.2018.03.029
  106. Li, Y., Shi, Z., Li, F., & Li, H.Y. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computer and Electronics in Agriculture, 56, 174–186
  107. Lindblom, J., Lundström,  C.,  Ljung,  M.,  &  Jonsson,  A.  (2016 ).  Promoting  sustainable  intensifcation  in precision agriculture: Review of decision support systems development and strategies. Precision Agriculture , 18, 309–331.
  108. Loisel, P., Jones, H., Charnomordic, B., & Tisseyre, B. (2018). An optimisation-based approach to generate intepretable within-field zones. Precision Agriculture, https://doi.org/10.1007/s11119-018-9584-3
  109. López-Granados, F., Jurado-Expósito,  M.,  Atenciano,  S., García-Ferrer,  A.,  Sánchez  de  la  Orden,  M.,  & García-Torres,  L.  (2002). Spatial  variability  of  agricultural  soil  parameters  in  southern  Spain. Plant  and Soil, 246, 97-105.
  110. López-Granados, F., Jurado-Expósito,  M.,  Alamo,  S.,  &  Garcıa-Torres,  L.  (2004).  Leaf nutrient  spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. European Journal of Agronomy, 21, 209-222.
  111. Lu, C.-T., Chen, D., & Kou, Y. (2003). Algorithms for spatial outlier detection . In X.Wu, A. Tuzhilin, and J. Shavlik (Eds.) Proceedings of the Third IEEE International Conference on Data Mining , Los Alamitos, CA, USA: IEEE Press, pp 597-600.
  112. Lyle, G., Bryan,  B.,  &  Ostendorf,  B.  (2013).  Post-processing  methods  to  eliminate  erroneous grain  yield measurements: review and directions for future development. Precision Agriculture, 15, 377-402.
  113. Maine, N., Nell,  W.T.,  Lowenberg-DeBoer,  J.,  &  Alemu,  Z.G. (2010) Economic  Analysis  of  Phosphorus Applications under Variable and Single-Rate Applications in the Bothaville District, Agrekon, 46, 532-547
  114. Maini, R., &  Aggarwal,  H.  (2009 ).  Study  and  Comparison  of  Various  Image  Edge  Detection  Techniques. International Journal of Image Processing, 3, 1-11.
  115. Marques, H.O., Campello,  R.J.,  Zimek,  A.,  Sander,  J.  (2015 ).    On  the  internal  evaluation  of  unsupervised outlier detection. In Proceedings of the 27th International Conference on Scientific and Statistical Database Management (SSDBM ’15), Amarnath Gupta and Susan Rathbun (Eds.), ACM, New York, NY, USA, 12 pp
  116. Marques da Silva,  J.R.  (2006). Analysis  of  the  Spatial  and  Temporal  Variability  of  Irrigated  Maize  Yield. Biosystems Engineering, 94, 337–349
  117. Massey, R.E., Myers, D.B., Kitchen, N.R., & Sudduth, K.A. (2008). Profitability maps as an input for site -specific management decision making. Agronomy Journal, 100, 52-59.
  118. Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266
  119. McCallum, M., & Sargent, M. (2008). The Economics of adopting PA technologies on Australian farms. 12th Annual Symposium on  Precision  Agriculture  Research  &  Application  in  Australasia. The  Australian Technology Park, Eveleigh, Sydney. 19 September 2008. p.44-47.
  120. McBratney, A. & Taylor, J. (2000 ). PV or not PV? In Proceedings of the  5th International Symposium on Cool Climate Viticulture and Oenology, Melbourne, Australia.
  121. McBratney, A., Whelan,  B.,  Ancev,  T.,  & Bouma,  J.  (2005).  Future  directions  of  precisi on  agriculture. Precision Agriculture, 6, 7-23.
  122. Mehnert, A., & Jackway, V. (1997). Improved seeded region growing algorithm. Pattern Recognition , Letters 18, 1065–1071.
  123. Mercer, W. B., & Hall, A. D. (1911). The experimental error of field trials. Journal of Agricultural Science, 4, 107–132.
  124. Molin, J.P. (2002 ).  Methodology  for  identification,  characterization  and  removal  of  errors  on  yield  maps. ASAE Annual International Meeting, Chicago, Proceedings, Illinois.
  125. Molin, J.P., & Faulin, G.D.C. (2002). Spatial an d temporal variability of soil electrical conductivity related to soil moisture. Scientia Agricola, 70, 1-5.
  126. Molin, J. P., Menegatti, L.A.A, Pereira, L.L., Cremonini, L.C., & Evangelista, M. (2002 ). Testing a fertilizer spreader with VRT. In  Proceedings  of the  World  Congress  of  Computers  in  Agriculture  and  Natural Resources, 232-237
  127. Mondal, P., &  Basu,  M.  (2009 ).  Adoption  of  precision  agriculture  technologies  in  India  and  in  some developing countries: Scope, present status and strategies. Progress in Natural Science, 19, 659–666
  128. Monsó, A., Arnó, J., & Martínez-Casasnovas, J.A. (2013). A simplified index to assess the opportunity for selective wine grape harvesting from vigour maps. Proceedings of the 9th European Conference on Precision Agriculture, 625-32
  129. Moral F.J., Terron  J.M.,  Marques  da  Silva,  J.R.  (2010). Delineation  of  management  zones  using  mobile measurements  of  soil  electrical  conductivity  and  multivariate  geostatistical  techniques. Soil  &  Tillage Research, 106, 335–343
  130. Norwood, S. & Fulton, J. (2009). GPS/GIS Applications for Farming Systems. Alabama Farmers Federation Commodity Organizational Meeting, USA.
  131. Noyel, G., Angulo, J., Jeulin, D. (2007). Morphological segmentation of hyperspectral images. Image Analysis and Stereology, 26, 101-109.
  132. Oliver, M.A., Webster, M. (1989 ). A geostatistical basis for spatial weighing in  multivariate  classification, Mathematical Geology, 21, 15-35.
  133. Oliver, M. A. (2010). Geostatistical Applications for Precision Agriculture, Springer, London, UK, 295 pp.
  134. Oliver, Y.M., & Robertson, M.J. (2013 ). Quantifying the spatial pattern of the yield gap within a farm in a low rainfall Mediterranean climate. Field Crops Research, 150, 29-41.
  135. Özgöz, E., Günay,  H.,  Önen,  H.,  Bayram,  M.,  &  Acir,  N.  (2012 ).  Effect  of  management  on  spatial  and temporal distribution of soil physical properties. Journal of Agricultural Sciences, 18, 77–91.
  136. Pal, N.R., & Pal, S.K. (1993). A review on image segmentation techniques. Pattern Recognition, 26, 1277 – 1294.
  137. Pallottino, F., Biocca, M., Nardi, P., Figorilli, S., Menesatti, P., & Costa, C. (2017). Science mapping approach to analyze the research evolution   on precision   agriculture:   world,   EU   and Italian   situation. Precision Agriculture, https://doi.org/10.1007/s11119-018-9569-2
  138. Paoli J. N., Tisseyre B., Strauss O., & McBratney A.B. (2010 ). A technical opportunity index based on a fuzzy footprint of the machine for site-specific management: application to viticulture. Precision Agriculture, 11(4) , 379-396.
  139. Pedroso, M., Taylor, J., Tisseyre, B., Charnomordic, B., & Guillaume, S. (2010 ), A segmentation algorithm for the delineation of management zones, Computer and Electronics in Agriculture, 70, 199–208.
  140. Peralta, N.R., Costa, J.L., Balzarini, M., Franco, M.C., Córdoba, M., & Bullock, D. (2015 ). Delineation of management zones to improve nitrogen management of wheat, Computer and Electronics in Agriculture . 110, 103–113.
  141. Pham, D.L., Xu, C.Y., & Prince, J.L. (2000 ) A survey of current methods in  medical  image  segmentation. Annual review of biomedical engineering, 315–337.
  142. Ping, J.L., & Dobermann, A. (2003). Creating spatially contiguous yield classes for site-specific management. Agronomy Journal, 95, 1121–1131
  143. Ping, J.L, & Dobermann, A. (2005). Processign of yield map data. Precision Agriculture, 6, 193-212.
  144. Pringle, M. J., McBratney, A. B., Whelan, B. M., & Taylor, J. A. (2003 ). A preliminary approach to assessing the opportunity for site-specific crop management in a field, using a yield monitor. Agricultural Systems, 76, 273–292.
  145. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,  Austria.
  146. Rab, M.A., Fisher, P.D., Armstrong, R.D., Abuzar, M., Robinson, N.J., & Chandra, S. (2009 ). Advances in precision agriculture in south-eastern Australia. IV. Spatial variability in plant-available water capacity of soil and its relationship with yield in site-specific management zones. Crop and Pasture Science, 60, 885-900
  147. Reinke, R., Dankowicz, H., Phelan, J., & Kang, W. (2011 ). A dynamic grain flow model for a mass flow yield sensor on a combine. Precision Agriculture, 12, 732–749
  148. Reitz, P., &  H.  D.  Kutzbach  (1996 ).  Investigations  on  a  particular  yield  mapping  system  for  combine harvesters. Computers and Electronics in Agriculture, 14, 137–150.
  149. Reza, S.K., Sarkar, D., Baruah, U., & Das, T.H. (2010 ) Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district, Tripura. Agropedology, 2, 38–48
  150. Robert, P. C.  (1993 ).  Characterisation  of  soil  conditions  at  the  field  level  for  soil  specific  management. Geoderma 60, 57–72.
  151. Robert, P. C. (1999). Precision agriculture: research needs and status in the USA. In: Precision Agriculture, 99 Proceedings of the 2nd European Conference on Precision Agriculture, edited by J. V. Stafford (Sheffield Academic Press, Sheffield, UK), Part 1, p. 19–33.
  152. Robertson, G.P., Klingensmith, K.M., Klug, M.J., Paul, E.A., Crum, J.R., & Ellis B.G. (1997 ). Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications, 7, 158 – 70
  153. Robertson, M., Lyle, G.,  &  Bowden,  J.  W.  (2008).  Within-field  variability  of  wheat  yield  and  economic implications for spatially variable nutrient management. Field Crops Research, 105, 211-220.
  154. Robinson, T. P., & Metternicht, G. (2005). Comparing the performance of techniques to improve the quality of yield maps. Agricultural Systems, 85, 19–41
  155. Rodeghiero, M., &   Cescatti,   A.   (2008 ).   Spatial   variability   and   optimal   sampling   strategy   of   soil respiration. Forest Ecology and Management, 255, 106-112
  156. Roland Berger Strategy Consultants (2016 ). Business opportunities in Precision Agriculture: Will Big Data feed the world  in  the  future  ? https://www.rolandberger.com/de/Publications/pub_precision_farming.html  (accessed on 05/06/2018)
  157. Roudier, P., Tisseyre,  B.,  Poilvé,  H.,  &  Roger,  J.  (2008). Management  zone  delineation  using  a  modified watershed algorithm. Precision Agriculture, 9, 233–250.
  158. Roudier, P., Tisseyre,  B.,  Poilvé,  H.,  &  Roger,  J.  (2011). A  technical  opportunity  index  adapted  to  zone specific management. Precision Agriculture, 12, 130–145.
  159. Röver, M., & Kaiser, E. A. (1999). Spatial heterogeneity within the plough layer: low and mod erate variability of soil properties. Soil Biology and Biochemistry, 31, 175-187.
  160. Sadras, V. & Bongiovanni, R. (2004 ). Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crops Research, 90, 303–310
  161. Santesteban, L. G., Guillaume,  S.,  Royo,  J.  B.,  &  Tisseyre,  B.  (2013 )  Are  precision  agriculture  tools  and methods relevant at the wholevineyard scale? Precision Agriculture, 14, 2–17.
  162. Sawant, K. (2014).  Adaptive  methods  for  determining  DBSCAN  parameters. International  Jou rnal  of Innovative Science, Engineering & Technology, 1, 330-334
  163. Say, M., Keskin,  M.,  Sehri,  M.,  &  Sekerli,  Y.E.  (2017 ).  Adoption  of  precision  agriculture  technologies  in developed and developing countries. International Science and Technology Conference, July 17-19, Berlin
  164. Schimmelpfennig, David (2016).  Farm  Profits  and  Adoption  of  Precision  Agriculture.  No.  249773. United States Department of Agriculture, Economic Research Service.
  165. Schueller, J. K. (1997). Technology for precision agriculture. In J.V. S tafford (Ed.), Precision Agriculture’ 97(pp. 19–33). Oxford, UK: BIOS Scientific Publishers.
  166. Serrano, J.M., Peça, J.O., Marques da Silva, J. R., & Shahidian, S. (2010). Mapping soil and pasture variability with an electromagnetic induction sensor. Computers and Electronic in Agriculture, 73, 1, 7–16.
  167. Shahandeh, H., Wright,  A.L.,  Hons,  F.M.,  &  Lascano,  R.J.  (2005 ).  Spatial  and  temporal  variation  of  soil nitrogen parameters related to soil texture and corn yield. Agronomy Journal, 97, 772–782
  168. Shockley, J. M., Dillon, C. R., & Stombaugh, T. S. (2011 ). A whole farm analysis of the influence of autosteer navigation on net returns, risk, and production practices. Journal of Agricultural and Applied Economics , 43, 57–75.
  169. Silva, J.V., Reidsma,  P.,  Laborte,  A.,  &  van  Ittersum,  M.K.  (2016 ).  Explaining  rice  yield  gaps  in  Central Luzon, Phillippines: an application of stochastic  frontier analysis and crop modelling. European Journal of Agronomy http://dx.doi.org/10.1016/ j.eja.2016.06.017.
  170. Simbahan, G.C., Dobermann,  A.,  &  Ping,  J.L.  (2004). Screening  yield  monitor  data  improves  grain  yield maps. Agronomy Journal, 96, 1091-1102
  171. Song, X., Wang, J., Huang, W., Liu, L., Yan, G., & Pu, R. (2009 ) The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture, 10, 471–487.
  172. Spekken, M., Anselmi, A. A., & Molin, J. P. (2013 ). A simple method for filtering spatial data. In J.V. Stafford (Ed.), Precision agriculture’13: Proceedings of the 9th European Conference on precision agriculture. The Netherlands: Wageningen Academic Publishers, pp 259-266.
  173. Stenger, R., Priesack, E., & Beese, F. (2002). Spatial variation of nitrate– N and related soil properties at the plot-scale. Geoderma, 105, 259-275.
  174. Stoorvogel, J., &  Bouma,  J.  (2005).  Precision  agriculture  :  the  solution  to  control  nutrient  emissions  ? In Stafford,  J.,  editor,  Precision  agriculture  ’05  :  Proceedings  of  the  5th  European  Conference  on  Precision Agriculture, pages 47_55, Uppsala, Sweden. Wageningen Academic Publishers.
  175. Sudduth, K.A., Drummond, S.T., Birrell, S.J., & Kitchen, N.R. (1997 ). Spatial modeling of crop yield using soil and topographic data. In Proceedings of the First European Conference on Precision Agriculture, 439 – 447.
  176. Sudduth, K., & Drummond, S. T. (2007). Yield Editor : Software for Removing Errors from Crop Yield Maps. Agronomy Journal, 99, 1471.
  177. Sudduth, K.A., Drummond, S.T., Myers, D.B., Anatole, H. (2012 ). Yield editor 2.0: Software for automated removal of yield  map  errors. In:  Proceedings  of  the American  Society  of  Agricultural  and  Biological Engineers International (ASABE)
  178. Sun, B., Zhou, S., & Zhao, Q. (2003). Evaluation of  spatial and temporal changes of  soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115, 85-99.
  179. Sun, W., Whelan,  B.,  McBratney,  A.B.,  &  Minasny,  B.  (2013 ).  An  integrated  framework  for  software  to provide  yield  data  cleaning  and  estimation  of  an  opportunity  index  for  site-specific  crop  management. Precision Agriculture, 14, 376–391.
  180. Sykuta, M. E. (2016 ). Big Data in Agriculture: Property Rights, Privacy and Competition in Ag Data Services. International Food and  Agribusiness  Management  Review  Special  Issue,  19(A).  Syngenta  Foundation  for Sustainable Agriculture. FarmForce.
  181. Tagarakis, A., Liakos, V.,  Fountas,  S.,  Koundouras,  S.,  &  Gemtos,  T.A.  (2013 ).  Management  zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14, 18-39.
  182. Tarabalka, Y., Chanussot, J., & Benediktsson, J.A. (2010). Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 43, 2367-2379.
  183. Taylor, R.K., Kluitenberg, G.J., Schrock, M.D., Zhang, N., Schmidt, J.P., & Havlin, J.L. (2001 ). Using yield monitor data to determine spatial crop production potential. American Society of Agricultural Engineers , 44, 1409-1414.
  184. Taylor, J., Tisseyre, B., Bramley, R., & Reid, A. (2005 ). A comparison of the spatial variability of vineyard yield in European  and  Australian  production  systems. In: Stafford,  J.  V.  (Ed.),  Proceedings  of  the  4th European Conference on Precision Agriculture. The Netherlands: Wageningen Academic Publishers, pp 907 -914.
  185. Taylor, J. A., Mcbratney, A. B., & Whelan, B. M. (2007 ). Establishing Management Classes for Broadacre Agricultural Production. Agronomy Journal, 99, 1366–1376.
  186. Taylor, J., Acevedo-Opazo, C., Ojeda, H., & Tisseyre, B. (2010 ). Identification and significance of sources of spatial variation in grapevine water status. Australian Journal of vine and wine research, 16, 218-226
  187. Taylor, J.A., & Bates, T.R. (2013 ). A discussion on the significance associated with Pearson’s correlation in precision agriculture studies. Precision Agriculture, 14, 558-564.
  188. Tisseyre, B., &McBratney, A. (2008). A technical opportunity i ndex based on mathematical morphology for site-specific management: an application to viticulture. Precision Agriculture, 9, 101–113.
  189. Tisseyre, B. (2012).  Peut-on  appliquer  le  concept  d’agriculture  de  precision  a  la  viticulture  ?  Mémoire d’habilitation à diriger des recherches. CNECA no3. Montpellier.
  190. Tisseyre, B, Leroux, C., Pichon, L., Geraudie, V., & Sari, T. (2018). How to define the optimal grid si ze to map high spatial resolution data. Precision Agriculture. https://doi.org/10.1007/s11119-018-9566-5
  191. Tobler, W. (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography , 46, 234-240
  192. Tozer, P. &  Isbister,  I.  (2007).  Is  it  economically  feasible  to  harvest  by  management  zone  ? Precision Agriculture, 8, 151-159.
  193. Tullberg J.N., Yule D.F., & McGarry D. (2007). Controlled traffic farming— From research to adoption in Australia. Soil and Tillage Research, 97, 2, p. 272-281.
  194. USDA (2015). Agricultural  resource  management  survey:  US  rice  industry. United  States  Department  of Agriculture (USDA) National Agricultural Statistics Service (NASS) Highlights. No 2015-2. 4 pp.
  195. Van Dijk, M., Morley, T., Jongeneel, R., van Ittersum, M., Reidsma, P., & Ruben, R. (2017 ). Disentangling agronomic and economic  yield  gaps:  An  integrated  framework  and  application. Agricultural  Systems ,  154, 90-99.
  196. Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2012 ). Yield gap analysis with local to global relevance—A review. Field Crops Research, 143, 4-17.
  197. Vasu, D., Singh,  S.  K.,  Sahu,  N., Tiwary,  P.,  Chandran,  P.,  Duraisami,  V.  P.,  et  al. (2017).  Assessment  of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169, 25-34.
  198. Vincent, L., &  Soille,  P.  (1991 ).  Watersheds  in  digital  spaces:  an  efficient  algorithm  based  on  immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 583–598.
  199. Vinh, N.X., Chan, J., Romano, S., Bailey, J., Leckie, C., Ramamohanarao, K., & Pei, J. (2016 ). Discovering outlying aspects in large datasets. Data Mining and Knowledge Discovery, 1–36.
  200. Wang, D., Prato, T., Qiu, Z., Kitchen, N., & Sudduth, K. (2003 ). Economic and Environmental Evaluation of Variable Rate Nitrogen and Lime Application for Claypan Soil Fields. Precision Agriculture, 4, 35-52
  201. Wathes, C.M., Kristensen,  H.H.,  Aerts,  J.M.,  &  Berckmans,  D.  (2008 ).  Is  precision  livestock  farming  an engineer ‘s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Computers and Electronics in Agriculture, 64, 2-10.
  202. Weisstein, E.W. (2002)   “Lambert   W-function,” MathWorld,     A     Wolfram     Web     Resource., http://mathworld.wolfram.com/LambertW-Function.html (Last accessed 10 August 2017)
  203. Whelan, B., & McBratney, A. (2000). The null  hypothesis  of precision agriculture  management. Precision Agriculture, 2, 265_279.
  204. Wolfert, S., L. Ge,  C.  Verdouw,  &  M.-J.  Bogaardt  (2017).  “Big  Data  in  Smart  Farming – A  review.” Agricultural Systems, 153, 69-80
  205. Wu, J., Norvell, W. A., Hopkins, D. G., & Welch, R. M. (2002 ). Spatial variability of grain cadmium and soil characteristics in a durum wheat field. Soil Science Society of America Journal, 66, 268-275.
  206. Xin-Zhong, W., Guo-Shun,  L.,  Hong-Chao,  H.,  Zhen-Hai,  W.,  Qing-Hua,  L.,  Xu-Feng,  L.,  et  al.  (2009 ). Determination of management zones for a tobacco field based on soil fertility. Computers and Electronics in Agriculture, 65(2), 168-175.
  207. Yost, M.A., Kitchen, N.R., Sudduth, K.A., Sadler, E.J., Drummond, S.T., & Volkmann, M.R. (2017). Long -term impact of a precision agriculture system on grain crop production. Precision Agriculture, 18, 823-842
  208. Zadeh, L. (1964) Fuzzy sets. Information and Control, 8, 338–353.
  209. Zane, L., Tisseyre, B., Guillaume, S., & Charnomordic, B. (2013). Within-field zoning using a region growing algorithm guided by geostatistical analysis. In Proceedings of Precision Agriculture, 313-319
  210. Zhang, X., Jiang,  J.,  Qiu,  X.,  Wang,  J,  &  Zhu,  Y.  (2016 ). An  improved  method  of  delineating  rectangular management zones using a semivariogram-based technique. Computers and electronics in Agriculture , 121, 74-83
  211. Zhao, J., Lu, C., & Kou. Y. (2003). Detecting Region Outliers in Meteorological Data. In Proceedings of the 11th ACM International Symposium on Advances in Geographic Information Systems, 49– 55, New Orleans, Louisiana, USA.
  212. Zhao, C., Huang, W., Chen, L., Meng, Z., Wang, Y., & Xu, F. (2010 ). A harvest area measurement system based on ultrasonic sensors and DGPS for yield map correction. Precision Agriculture, 11, 163-180.

Support Aspexit’s blog posts on TIPEEE


A small donation to continue to offer quality content and to always share and popularize knowledge =) ?


Share this article!

Leave a Reply

Your email address will not be published. Required fields are marked *